SYRIAN PRIVATE UNIVERSITY

Electric Circuits I

 Dr. Eng. Hassan M. AfmadHassan.Ahmad@spu.edu.sy, istamo48@mail.ru

Chapter 5 Operational Amplifier

5.1 What is an Op Amp?
5.2 Ideal Op Amp
5.3 Configuration of Op Amp
5.4 Cascaded OpAmp
5.5 Application

- Digital-to Analog Converter

5.1 What is an Op Amp

The operational amplifier, or ($\mathbf{o p}$ amp for short) is an electronic unit that behaves like a voltage-controlled voltage source (VCVS).
\square It is an active circuit element designed to perform mathematical operations of addition, subtraction, multiplication, division, differentiation and integration.
\square Op amps are commercially available in integrated circuit (IC) packages in several forms as shown in Fig. for a typical operational amplifier.

Op Amp

- A typical Op amp is the eight-pin dual in-line package (or DIP), Fig. (a).
- Pin or terminal 8 is unused, and terminals 1 and 5 are of little concern to us.
- The five important terminals are:
- The inverting input, pin 2.

- The noninverting input, pin 3.
- The output, pin 6.
- The positive power supply V^{+}pin 7
- The negative power supply V, pin 4 .
- The circuit symbol for the op amp is the triangle in Fig.(b);
- The inputs are marked with minus (-) and plus (+) to speeify inverting and noninverting inputs.

(b)

Op Amp

- As an active element, the op amp must be powered by a voltage supply (V_{CC}, Fig. (a)
- By applying KCL:

$$
i_{o}=i_{1}+i_{2}+i_{+}+i_{-}
$$

- The equivalent circuit model of an op amp, Fig.(b).
- R_{i} is the Thevenin equivalent resistance seen at the input terminals, while R_{o} is the Thevenin equivalent resistance seen at the output.
- The differential input voltage v_{d} is given by

$$
v_{d}=v_{2}-v_{1}
$$

where $v_{1}-$ inverting terminal voltage; $v_{2}-$ noninverting terminal voltage.

(a)

- The output v_{o} is given by $v_{o}=A v_{d}=A\left(v_{2}-v_{1}\right)$

(b)
where A is called the open-loop voltage gain because it is the gain of the op amp without any external feedback from output to input.
- When there is a feedback path from output to input, the ratio of the output voltage to the input voltage is called the closed-loop gain.

Op Amp

- Typical ranges for op amp parameters (see table).
- The op amp can operate in three modes, depending on the differential input voltage v_{d}, as shown in Fig.

1. Positive saturation, $v_{o}=V_{\mathrm{CC}}$.
2. Linear region,

Parameter	Typical range	Ideal values
Open-loop gain, A	10^{5} to $10^{8} \Omega$	$\infty \Omega$
Input resistance, R_{i}	10^{5} to $10^{13} \Omega$	$\infty \Omega$
Output resistance, R_{o}	10 to 100Ω	0Ω
Supply voltage, V_{CC}	5 to 24 V	

$$
-V_{\mathrm{CC}} \leq v_{o}=A v_{d} \leq V_{\mathrm{CC}} .
$$

3. Negative saturation, $v_{o}=-V_{\mathrm{CC}}$

- We will assume that our op amps operate in the linear mode, the output voltage is restricted by

$$
-V_{C C} \leq v_{o} \leq V_{C C}
$$

Example 5.1

A 741 op amp has an open-loop voltage gain of 2×10^{5}, input resistance of $2 \mathrm{M} \Omega$, and output resistance of 50Ω. The op amp is used in the circuit of Fig.(a).
a) Find the closed-loop gain v_{0} / v_{s}.
b) Determine current i when $v_{\mathrm{s}}=2 \mathrm{~V}$.

Solution

Using the equivalent circuit model for op amp, we obtain the equivalent circuit of Fig.(a) as shown in Fig.(b).
At node 1, KCL gives

(a)
$\frac{v_{s}-v_{1}}{10 \times 10^{3}}=\frac{v_{1}}{2000 \times 10^{3}}+\frac{v_{1}-v_{o}}{20 \times 10^{3}} \Rightarrow 200 v_{s}=301 v_{1}-100 v_{o} \Rightarrow 2 v_{s} \simeq 3 v_{1}-v_{o}$
$\Rightarrow \quad v_{1}=\frac{2 v_{s}+v_{o}}{3}$ (1)
At node $\boldsymbol{O}, \frac{v_{1}-v_{o}}{20 \times 10^{3}}=\frac{v_{o}-A v_{d}}{50}$, but $v_{d}=v_{1}$

$$
\begin{equation*}
\Rightarrow v_{1}-v_{o}=400\left[v_{o}+\left(2 \times 10^{5}\right) v_{1}\right] \tag{2}
\end{equation*}
$$

Substituting v_{1} from Eq. (1) into Eq. (2) gives

$$
\begin{aligned}
0 & \simeq 26667067 v_{o}+53333333 v_{s} \Rightarrow \frac{v_{o}}{v_{s}}=-1.9999699 \\
v_{s} & =2 V \Rightarrow v_{o}=-3.9999398 V \text { and } v_{1}=20.066667 \mathrm{~V} \Rightarrow i=\frac{v_{1}-v_{o}}{20 \times 10^{3}}=0.19999 \mathrm{~mA}
\end{aligned}
$$

5.2 Ideal Op Amp

- An ideal op amp has the following characteristics:
- Infinite open-loop gain, $A \approx \infty$
- Infinite input resistance, $R_{\mathrm{i}} \approx \infty$
- Zero output resistance, $R_{\mathrm{o}} \approx 0$.

- Two important characteristics of the ideal op amp are:

1. The currents into both input terminals are zero:

$$
i_{1}=0, \quad i_{2}=0
$$

2. The voltage across the input terminals is equal to zero; i.e.,

$$
v_{d}=v_{2}-v_{1}=0 \Rightarrow v_{1}=v_{2}
$$

Example 5.2.

Using the ideal op amp model in Fig.
a) Find the closed-loop gain $v_{\mathrm{o}} / v_{\mathrm{s}}$.
b) Determine current i_{o} when $v_{\mathrm{s}}=1 \mathrm{~V}$.

Solution:

- Notice that $v_{2}=v_{\text {s }}$
- Since $i_{1}=0$, the $40-\mathrm{k} \Omega$ and $5-\mathrm{k} \Omega$ resistors are in series; The same current flows through them.
- v_{1} is the voltage across the $5-\mathrm{k} \Omega$ resiston

- Hence, using the voltage division principle (VDR),

$$
v_{1}=\frac{5}{5+40} v_{o}=\frac{v_{\sigma}}{9}
$$

- For ideal op amp, we know that $v_{2}=v_{1}$

So, $\quad v_{2}=v_{1}=v_{v}=\frac{v_{o}}{9} \Rightarrow \frac{v_{o}}{v_{s}}=9$

- At node O, (KCL):

$$
i_{o}=\frac{v_{o}}{40+5}+\frac{v_{o}}{20} \mathrm{~mA}
$$

5.3 Configuration of Op amp

1. Inverting amplifier reverses the polarity of the input signal while amplifying it.
\square The circuit of inverting amplifier is shown in Fig.(a).

- The noninverting input is grounded,
- v_{i} is connected to the inverting input through R_{1},
- The feedback resistor R_{f} is connected between the inverting input and output.
\square Our goal is to obtain the relationship between the input voltage v_{i} and the output voltage v
- Applying KCL at node $1, \quad i_{1}=i_{2} \Rightarrow \frac{v_{i}-v_{1}}{R_{1}}=\frac{v_{1}-v_{o}}{R_{f}}$
- But $v_{1}=v_{2}=0$ for an ideal op amp, since the noninverting terminal is grounded. Hence,

$$
\frac{v_{i}}{R_{1}}=-\frac{v_{o}}{R_{f}} \Rightarrow v_{o}=-\frac{R_{f}}{R_{1}} v_{i}
$$

- The voltage gain is

$$
A_{v}=\frac{v_{o}}{v_{i}}=-\frac{R_{f}}{R_{1}}
$$

Example 5.3.

Refer to the op amp in Fig. If $v_{\mathrm{i}}=0.5 \mathrm{~V}$, calculate:
(a) the output voltage, v_{0};
(b) the current in the $10 \mathrm{k} \Omega$ resistor.

Solution:

a) Output voltage:

$$
v_{o}=-\frac{R_{f}}{R_{1}} v_{i}=-\frac{25}{10}(0.5)=-1.25 \mathrm{~V}
$$

b) the current through the $10 \mathrm{k} \Omega$ resistor is:

$$
i=\frac{v_{i}-0}{R_{1}}=\frac{0.5-0}{10 \times 10^{3}}=50 \mu \mathrm{~A}
$$

Example 5.4.

Determine v_{o} in the op amp circuit shown in Fig.
Solution:
Applying KCL at node a,

$$
\begin{aligned}
& \frac{v_{a}-v_{o}}{40 \mathrm{k} \Omega}=\frac{6-v_{a}}{20 \mathrm{k} \Omega} \Rightarrow v_{a}-v_{o}=12-2 v_{a} \\
& \Rightarrow v_{o}=3 v_{a}-12
\end{aligned}
$$

But $v_{\mathrm{a}}=v_{\mathrm{b}}=2 \mathrm{~V}$ for an ideal op amp. Hence,

$$
v_{o}=3 \times 2-12=-6 \mathrm{~V}
$$

Notice that if $v_{\mathrm{b}}=0=v_{\mathrm{a}}$, then $v_{\mathrm{o}}=-12$.
2. Non-inverting amplifier is designed to produce positive voltage gain.

- The circuit of the op amp is the noninverting amplifier is shown in Fig.
- Application of KCL at the inverting terminal gives

$$
i_{1}=i_{2} \Rightarrow \frac{0-v_{1}}{R_{1}}=\frac{v_{1}-v_{o}}{R_{f}}
$$

- But $v_{1}=v_{2}=v_{i}$,
so $\quad \frac{-v_{i}}{R_{1}}=\frac{v_{i}-v_{o}}{R_{f}} \Rightarrow$

$$
v_{o}=\left(1+\frac{R_{f}}{R_{1}} v_{i}\right)
$$

- The voltage gain is

$$
A_{v}=\frac{v_{o}}{v_{i}}=1+\frac{R_{f}}{R_{1}}
$$

which does not have a negative sign.
Thus, the output has the same polarity as the input.

- In noninverting amplifier circuit, if feedback resistor $R_{f}=0$ (short circuit) or $R_{1}=\infty$ (open circuit) or both, the gain becomes 1 .
- Under these conditions, the circuit is called a voltage follower (تابع/متتبع الجها) (or unity gain amplifier). Hence,

$$
v_{o}=v_{i}
$$

- Such a circuit has a very high input impedance and is therefore useful as an intermediate-stage
 isolate one circuit from another, as in Fig.

Example 5.5.

For the op amp shown in Fig., calculate the output voltage v_{o}.
Solution:
METHOD 1. Using superposition, we let

$$
v_{o}=v_{o 1}+v_{o 2}
$$

where $v_{\mathrm{o} 1}$ is due to the $6-\mathrm{V}$ voltage source, and v_{02} is due to the $4-\mathrm{V}$ input.

- To get $v_{o 1}$, we set the $4-\mathrm{V}$ source equal to zero

The circuit becomes an invert. amp.

$$
V_{b 1}=-\frac{10}{4}(6)=-15 \mathrm{~V}
$$

- To get v_{02}, we set the $6-\mathrm{V}$ source equal to zero. The circuit becomes a noninvert. amp. , so that

$$
v_{o 2}=\left(1+\frac{10}{4}\right) 4=14 \mathrm{~V}
$$

- Thus, $v_{o}=v_{o 1}+v_{o 2}=-15+14=-1 \mathrm{~V}$

METHOD 2. Using nodal analysis.

- Applying KCL at node $a, \quad \frac{6-v_{a}}{4}=\frac{v_{a}-v_{o}}{10}$
- But $v_{a}=v_{b}=4$, so $5=4-v_{o} \Rightarrow v_{o}=-1 \mathrm{~V}$

3. Summing Amplifier is an op amp circuit that combines several inputs and produces an output that is the weighted sum of the inputs.

- Applying KCL at node \boldsymbol{a} gives:

$$
i=i_{1}+i_{2}+i_{3}
$$

- But

$$
\begin{aligned}
& i_{1}=\frac{v_{1}-v_{a}}{R_{1}} ; i_{2}=\frac{v_{2}-v_{a}}{R_{2}} \\
& i_{3}=\frac{v_{3}-v_{a}}{R_{3}} ; i=\frac{v_{a}-v_{o}}{R_{f}}
\end{aligned}
$$

- We note that $v_{\mathrm{a}}=0$, thus

$$
v_{o}=-\left(\frac{R_{f}}{R_{1}} v_{1}+\frac{R_{f}}{R_{2}} v_{2}+\frac{R_{f}}{R_{3}} v_{3}\right)
$$

Example 5.6.

Calculate v_{o} and i_{o} in the op amp circuit shown below.
Solution:
This is a summer with two inputs.

$$
v_{o}=-\left[\frac{10}{5}(2)+\frac{10}{2.5}(1)\right]=-(4+4)=-8 \mathrm{~V}
$$

- The current i_{o} is the sum of the eurents through the $10-\mathrm{k} \Omega$ and $2-\mathrm{k} \Omega$ resistors.
- Both of these resistors have voltage $v_{o}=-8 \mathrm{~V}$ across them, since $v_{a}=v_{b}=0$.
- Hence,

$$
i_{0}=\frac{v_{o}-0}{10}+\frac{v_{o}-0}{2}=-0.8-4=-4.8 \mathrm{~mA}
$$

4. Difference amplifier is a device that amplifies the difference between two inputs but rejects any signals common to the two inputs.

- Applying KCL to node a,

$$
\frac{v_{1}-v_{a}}{R_{1}}=\frac{v_{a}-v_{o}}{R_{2}} \Rightarrow v_{o}=\left(\frac{R_{2}}{R_{1}}+1\right) v_{a}-\frac{R_{2}}{R_{1}} v_{1}
$$

- Applying KCL to node b,

$$
\frac{v_{2}-v_{b}}{R_{3}}=\frac{v_{b}-0}{R_{4}} \Rightarrow v_{b}=\frac{R_{4}}{R_{3}+R_{4}} v_{2}
$$

- But $v_{a}=v_{b}$, thus
or $\quad v_{o}=\left(\frac{R_{2}}{R_{1}}+1\right) \frac{R_{4}}{R_{3}+R_{4}} v_{2}-\frac{R_{2}}{R_{1}} v_{1}$

$$
v_{o}=\frac{R_{2}\left(1+R_{1} / R_{2}\right)}{R_{1}\left(1+R_{3} / R_{4}\right)} v_{2}-\frac{R_{2}}{R_{1}} v_{1}
$$

$$
\text { if } \frac{R_{2}}{R_{1}}=\frac{R_{3}}{R_{4}}=1 \Rightarrow v_{o} \stackrel{\downarrow}{=} v_{2}-v_{1}
$$

Example 5.7.

Determine R_{1}, R_{2}, R_{3} and R_{4} so that $v_{\mathrm{o}}=-5 v_{1}+3 v_{2}$ for the circuit shown below.

Solution:

- The output for this amplifier is

$$
v_{o}=\frac{R_{2}\left(1+R_{1} / R_{2}\right)}{R_{1}\left(1+R_{3} / R_{4}\right)} v_{2}-\frac{R_{2}}{R_{1}} v_{1}
$$

- Comparing with

$$
v_{o}=3 v_{2}-5 v_{1}
$$

we see that

$$
\frac{R_{2}}{R_{1}}=5 \Rightarrow R_{2}=5 R_{1}
$$

Also,

$$
5 \frac{\left(1+\mathrm{R}_{1} / \mathrm{R}_{2}\right)}{\left(1+\mathrm{R}_{3} / \mathrm{R}_{4}\right)}=3 \Rightarrow \frac{5}{\left(1+\mathrm{R}_{3} / \mathrm{R}_{4}\right)}=\frac{3}{5}
$$

Or

$$
2=1+\frac{R_{3}}{R_{4}} \Rightarrow R_{3}=R_{4}
$$

If we choose $R_{1}=10 \mathrm{k} \Omega$ and $R_{3}=20 \mathrm{k} \Omega$, then $R_{2}=50 \mathrm{k} \Omega$ and $R_{4}=20 \mathrm{k} \Omega$.

5.4 Cascaded Op Amp

DA cascade connection is a head-to-tail arrangement of two or more op amp circuits such that the output to one is the input of the next.

- When op amp circuits are cascaded, each circuit in the string is called a stage.
- The original input signal is increased by the gain of the individual stage.
- Figure displays a block diagram representation of three op amp circuits in cascade.
- Since the output of one stage is the input to the next stage, the overall gain of the cascade connection is the product of the gains of the individual op amp circuits, or

$$
A=A_{1} A_{2} A_{3}
$$

Example 5.8.

Find v_{o} and i_{o} in the circuit shown in Fig.

Solution:

This circuit consists of two noninverting amplifiers cascaded.

- At the output of the first op amp,

$$
v_{a}=\left(1+\frac{12}{3}\right)(20)=100 \mathrm{mV}
$$

- At the output of the second op amp, $=\left(1+\frac{10}{4}\right) v_{a}=350 \mathrm{mV}$
- The required current i_{o} is the current through the $10-\mathrm{k} \Omega$ resistor: $i_{o}=\frac{v_{o}-v_{b}}{10} \mathrm{~mA}$
- But $v_{b}=v_{a}=100 \mathrm{mV}$
- Hence,

$$
i_{o}=\frac{(350-100) \times 10^{-3}}{10 \times 10^{3}}=25 \mu \mathrm{~A}
$$

Example 5.9.

Find v_{0} in the op amp circuit of Fig.

Solution:

- Let v_{1} output of the first op amp and v_{2} output of the second op amp.
- The first stage is an inverting amplifier: $v_{1}=-\frac{50}{25} v_{s 1}$
- The second state is a summer:

$$
v_{2}=-\left(\frac{100}{50} v_{s 2}+\frac{100}{100} v_{1}\right)=-2 v_{s 2}-v_{1}=-2 v_{s 2}+2 v_{s 1}
$$

- The third state is a noninverting amplifier:

$$
v_{o}=\left(1+\frac{100}{50}\right) v_{2}=3 v_{2}=3\left(-2 v_{s 2}+2 v_{s 1}\right)=6 v_{s 1}-6 v_{s 2}
$$

5.5 Application: Digital-to Analog Converter

- The digital-to-analog converter (DAC) transforms digital signals into analog form.
- A typical example of a four-bit DAC is illustrated in Fig.(a).
- The four-bit DAC can be realized in many ways.
- A simple realization is the binary weighted ladder (سثم = درج موزون (b) , Fig. (b).

$$
-V_{0}=\frac{R_{f}}{R_{1}} V_{1}+\frac{R_{f}}{R_{2}} V_{2}+\frac{R_{f}}{R_{3}} V_{3}+\frac{R_{f}}{R_{4}} V_{4}
$$

(a)

(b)
where: $V_{1}-\mathrm{MSB}$ (most significant bit), $V_{4}-\mathrm{LSB}$ (least significant bit);
V_{1} to V_{4} are either 0 or 1 V .

Example 5.10.

In the op amp circuit of Fig., let $R_{f}=10 \mathrm{k} \Omega, R_{1}=10 \mathrm{k} \Omega, R_{2}=20 \mathrm{k} \Omega, R_{3}=40$ $\mathrm{k} \Omega$, and $R_{4}=80 \mathrm{k} \Omega$. obtain the analog output for binary inputs [0000], [0001], [0010], . . . , [1111].

Solution:

Substituting the given values of the input and feedback resistors in following Eq. gives
$-V_{0}=\frac{R_{f}}{R_{1}} V_{1}+\frac{R_{f}}{R_{2}} V_{2}+\frac{R_{f}}{R_{3}} V_{3}+\frac{R_{f}}{R_{4}} V_{4}=V_{1}+0.5 V_{2}+0.25 V_{3}+0.125 V_{4}$

Using this equation, a digital inputs produce an analog output as following:

$$
\begin{aligned}
& {\left[V_{1} V_{2} V_{3} V_{4}\right]=[0000] \Rightarrow-V_{o}=0 \mathrm{~V}} \\
& {\left[V_{1} V_{2} V_{3} V_{4}\right]=[0001] \Rightarrow-V_{o}=0.125 \mathrm{~V}} \\
& {\left[V_{1} V_{2} V_{3} V_{4}\right]=[0010] \Rightarrow-V_{o}=0.25 \mathrm{~V}} \\
& {\left[V_{1} V_{2} V_{3} V_{4}\right]=[0011] \Rightarrow-V_{o}=0.25+1.125=0.375 \mathrm{~V}} \\
& {\left[V_{1} V_{2} V_{3} V_{4}\right]} \\
& \vdots \\
& \vdots \\
& {\left[V_{1} V_{2} V_{3} V_{4}\right]=[1111] \Rightarrow-V_{o}=1+0.5+0.25+0.125=1.875 \mathrm{~V}}
\end{aligned}
$$

Input and output values of the four-bit DAC.

Binary input
$\left[V_{1} V_{2} V_{3} V_{4}\right]$
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Decimal value
Output
$-V_{0}$
0.125
0.25
0.375
0.5
0.625
0.75
0.875
1.0
1.125
1.25
1.375
1.5
1.625
1.75
1.875

The endl off chapter 5

